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Abstract. The notion of a co-isotropic and Legendre–Lagrangian submanifold of a Jacobi
manifold is given. A characterization of conformal Jacobi morphisms and conformal Jacobi
infinitesimal transformations is obtained as co-isotropic and Legendre–Lagrangian submanifolds
of Jacobi manifolds.

1. Introduction

In [14], Tulczyjew characterized a locally Hamiltonian vector field on a symplectic manifold
(M,�) as a Lagrangian submanifold of the symplectic manifold(TM,�c), whereTM is
the tangent bundle ofM and�c is the complete or tangent lift of� to TM. This fact
permitted the introduction of the notion of a generalized Hamiltonian system as a Lagrangian
submanifold of(TM,�c), and the discussion of, for instance, implicit differential equations
(see, for instance, [11, 12]).

Recently, this result was extended by Grabowski and Urbánski [4] for Poisson manifolds.
They proved that the tangent bundleTM of a Poisson manifold(M,3) is canonically
endowed with a Poisson structure, namely, the complete lift3c of 3. Thus, they proved
that a vector fieldX onM is a Poisson infinitesimal transformation (in other words,X is a
derivation of the algebra(C∞(M,R), { , })) if and only if its imageX(M) is a Lagrangian
submanifold of(TM,3c). Here, it is necessary to use a suitable definition of a Lagrangian
submanifold. In fact, a submanifoldS of a Poisson manifold is Lagrangian if and only if
for every pointx of S the intersectionTxS ∩ Dx is a Lagrangian subspace ofDx , where
TxS is the tangent space toS at x andDx is the tangent space to the symplectic leaf byx.
Concerning Poisson morphisms, it was proved by Weinstein in [16] (see also [15]) that a
differentiable mappingφ : (M1,31)→ (M2,32) between the Poisson manifolds(M1,31)
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and (M2,32) is a Poisson morphism if and only if its graph is a co-isotropic submanifold
of the Poisson manifold(M1 ×M2,31 − 32). This theorem extends the well known one
for symplectic manifolds. These two results are also independently obtained by Sánchez de
Alv árez [13].

The purpose of our paper is to extend the results for the case of Jacobi manifolds.
Jacobi manifolds are more involved, and the extension is far from being trivial. In fact,
if we start with a Jacobi manifold(M,3,E) and try to define in a natural way a similar
structure on the tangent bundleTM, we would inevitably fail to do this. The reason is the
intrinsic conformal character of Jacobi structures. In fact, the Hamiltonian vector fields in a
Jacobi manifold are conformal Jacobi infinitesimal transformations. Thus, instead of using
Jacobi morphisms we have to use conformal Jacobi morphisms. This implies that we are
compelled to add an extra factorR to our Jacobi manifolds.

On the other hand, it is well known that the contact manifolds are canonical examples
of Jacobi manifolds. In fact, the leaves of odd dimension of the characteristic foliation of
a Jacobi manifold are contact manifolds (see [3] and section 2.2). Thus, as a first step, in
section 3, we study the particular case of contact manifolds. In particular, we characterize
the contact transformations (or equivalently, the conformal Jacobi isomorphisms) and the
contact infinitesimal transformations (or equivalently, the conformal Jacobi infinitesimal
transformations) in terms of Legendre submanifolds of contact manifolds (see theorems 3.7
and 3.13). The results obtained in this section provide a good motivation for the general
study of conformal Jacobi morphisms between arbitrary Jacobi manifolds which will be
introduced in sections 4–6. In these sections we generalize the results of section 3. More
precisely, we prove the following results.

(1) Given two Jacobi manifolds(M1,31, E1) and (M2,32, E2), the productM =
M1×M2× R is endowed with a Jacobi structure

3 = 31+ ∂

∂t
∧ E1− et

(
32− ∂

∂t
∧ E2

)
E = E1.

Thus, given a mappingφ:M1→ M2 and a positive functiona ∈ C∞(M1,R), we prove that
the pair(a, φ) is a conformal Jacobi morphism if and only ifS = {(x1, φ(x1), ln(1/a(x1))) ∈
M1×M2× R/x1 ∈ M1} is a co-isotropic submanifold of(M,3,E) (theorem 5.3).

(2) In the same vein, if(M,3,E) is a Jacobi manifold, thenR× TM is endowed in a
canonical way with a Jacobi structure given by

3̄ = 3c+ ∂

∂s
∧ Ec− s

(
3v + ∂

∂s
∧ Ev

)
where 3v and Ev (respectively,3c and Ec) are the vertical (respectively, complete)
lifts of 3 and E to TM. Thus, we prove the following result. Given a vector field
X and a functionf on M, we denote byf × X : M → R × TM the mapping
x ∈ M → (f × X)(x) = (f (x),X(x)) ∈ R × TM. Then, the pair(f,X) is a conformal
Jacobi infinitesimal transformation if and only if(f × X)(M) is a Legendre–Lagrangian
submanifold of the Jacobi manifold(R× TM, 3̄,Ev) (theorem 6.5).

Here, the concept of a co-isotropic submanifold is the natural extension to Jacobi
manifolds of the notion of a co-isotropic submanifold in the setting of Poisson manifolds.
Also, the Legendre–Lagrangian submanifold is the natural extension to Jacobi manifolds of
the notions of Lagrangian and Legendre submanifolds in the setting of Poisson and contact
manifolds.

The above results are proved by defining the so-called Poissonization of a
Jacobi manifold (‘associated tangentially exact Poisson manifold’ in the terminology
of Lichnerowicz [9]). The Poissonization of a contact manifold coincides with its
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symplectification. This technique permits us to obtain the above results as a consequence
of the results of Grabowski and Urbánski, taking into account the relation between the co-
isotropic and Legendre–Lagrangian submanifolds of a Jacobi manifold and the co-isotropic
and Lagrangian submanifolds of its Poissonization (theorem 4.4).

All the manifolds considered throughout this paper are assumed to be connected.

2. Poisson morphisms and conformal Jacobi morphisms

2.1. Poisson morphisms

Let N be aC∞ manifold. Denote byx(N) the Lie algebra of the vector fields onN and
by C∞(N,R) the algebra ofC∞ real-valued functions onN . A Poisson bracket{ , } onN
is a bilinear mapping{ , } :C∞(N,R)× C∞(N,R)→ C∞(N,R) satisfying the following
properties:

(1) (Skew-symmetry) {f, g} = −{g, f }.
(2) (Leibniz rule) {f, gh} = {f, g}h+ {f, h}g.
(3) (Jacobi’s identity) {{f, g}, h} + {{h, f }, g} + {{g, h}, f } = 0.
The pair(N, { , }) will be called a Poisson manifold.
In [8], Lichnerowicz gave a more compact definition of a Poisson manifold. Define a

2-vector3 on N by 3(df, dg) = {f, g}. Then [3,3] = 0, where [, ] is the Schouten–
Nijenhuis bracket. Conversely, let3 be a 2-vector onN and define a bracket of functions
{f, g} = 3(df, dg). Then,{, } satisfies Jacobi’s identity if and only if [3,3] = 0. Such a
2-vector3 will be called a Poisson tensor.

The main examples of Poisson manifolds are symplectic manifolds. A symplectic
manifold is a pair(N,�), whereN is an even-dimensional manifold and� is a closed
non-degenerate 2-form onN . We define a 2-vector3 onN by

3(α, β) = �([−1(α), [−1(β)) (1)

for α, β ∈ �1(N), where�1(N) is the space of 1-forms onN and [ : x(N) → �1(N) is
the isomorphism ofC∞(N,R)-modules defined by[(X) = iX�.

Let (N,3) be a Poisson manifold. Define aC∞(N,R)-linear mapping # :�1(N) →
x(N) as follows:

(#α)(β) = 3(α, β)
for α, β ∈ �1(N). If f ∈ C∞(N,R), the vector fieldXf = #(df ) is called the Hamiltonian
vector field associated withf .

Denote byDx the subspace ofTxN generated by all the Hamiltonian vector fields
evaluated at the pointx ∈ N or, in other words,Dx = #x(T ∗x N). The distribution
x ∈ N → Dx ⊆ TxN is involutive (see [8]) and thus it defines a generalized foliation
onN . Since the leaves ofD are symplectic manifolds (see [8]),D is called the symplectic
foliation of N .

Now, let φ : (N1,31) → (N2,32) be a differentiable mapping between the Poisson
manifolds (N1,31) and (N2,32). Suppose that{ , }1 (respectively,{ , }2) is the Poisson
bracket onN1 (respectively,N2). Then, the mappingφ is said to be a Poisson morphism if
{f2, g2}2 ◦ φ = {f2 ◦ φ, g2 ◦ φ}1 for f2, g2 ∈ C∞(N2,R) or, equivalently, if

31(φ
∗α2, φ

∗β2) = 32(α2, β2) ◦ φ (2)

for α2, β2 ∈ �1(N2). If the Poisson morphismφ is a diffeomorphism thenφ is called a
Poisson isomorphism.
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Remark 2.1. Let (N1, �1) and (N2, �2) be symplectic manifolds equipped with the
Poisson structures associated with their symplectic structures. If a differentiable mapping
φ :N1 → N2 is a Poisson morphism then it is necessarily a submersion. In the special
case whereN1 andN2 are of the same dimension, the mappingφ : N1→ N2 is a Poisson
morphism if and only if it is a (local) symplectic isomorphism (that is,φ∗�2 = �1).
However, if dimN1 > dimN2 and φ is a Poisson morphism thenφ is not a symplectic
morphism (note that a symplectic morphism is necessarily an immersion) (for more details,
see [7]).

A vector fieldX in a Poisson manifold(N,3) is said to be a Poisson infinitesimal
transformation (see [4, 7, 8]) if its flow consists of Poisson isomorphisms, or, equivalently,
if

LX3 = 0 (3)

whereL is the Lie derivative onN . The Hamiltonian vector fields are Poisson infinitesimal
transformations.

If (N,�) is a symplectic manifold andX a vector field onN , thenX is a Poisson
infinitesimal transformation if and only ifX is a symplectic infinitesimal transformation
(i.e. LX� = 0).

A submanifoldS of a Poisson manifold(N,3) is called co-isotropic [15, 16] if

#x(TxS)
0 ⊆ TxS (4)

for x ∈ S, (TxS)0 being the annihilator subspace ofTxS. The submanifoldS is said to be
Lagrangian [4, 15] if

#x(TxS)
0 = TxS ∩Dx. (5)

The above definitions generalize the usual definitions of co-isotropic and Lagrangian
submanifold in a symplectic manifold.

We also have:

Theorem 2.2. [16]. Let φ : (N1,31)→ (N2,32) be a differentiable mapping between the
Poisson manifolds(N1,31) and (N2,32). Then,φ is a Poisson morphism if and only if
Graphφ is a co-isotropic submanifold of the Poisson manifold(N1 × N2,3), 3 being the
2-vector onN1×N2 given by3 = 31−32.

Theorem 2.3. [4, 13]. LetX be a vector field on a Poisson manifold(N,3). Then:
(i) the complete lift3c to TN of 3 is a Poisson structure onTN ;
(ii) X is a Poisson infinitesimal transformation if and only ifX(N) is a Lagrangian

submanifold of(T N,3c).

Remark 2.4. If (N,�) is a symplectic manifold then the complete lift�c of � to
TN is a symplectic 2-form onTN . Moreover, if 3 is the Poisson structure onN
associated with the symplectic 2-form� then the Poisson structure onTN associated
with the symplectic 2-form�c is just3c. Thus, theorems 2.2 and 2.3 generalize for the
Poisson manifolds the corresponding results on symplectic isomorphisms and symplectic
infinitesimal transformations (see [14]).
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2.2. Conformal Jacobi morphisms

A Jacobi structure onM is a pair(3,E) where3 is a 2-vector andE a vector field onM
satisfying

[3,3] = 2E ∧3 LE3 = [E,3] = 0. (6)

The manifoldM endowed with a Jacobi structure is called a Jacobi manifold. If(M,3,E)

is a Jacobi manifold we can define a bracket of functions (called a Jacobi bracket) as follows:

{f, g} = 3(df, dg)+ fE(g)− gE(f ) for all f, g ∈ C∞(M,R). (7)

The mapping{ , }:C∞(M,R) × C∞(M,R) → C∞(M,R) is bilinear, skew-symmetric,
satisfies the Jacobi’s identity and

support{f, g} ⊂ supportf ∩ supportg.

Thus, the spaceC∞(M,R) endowed with the Jacobi bracket is a local Lie algebra in
the sense of Kirillov (see [6]). Conversely, a structure of local Lie algebra on the space
C∞(M,R) of real-valued functions on a manifoldM determines a Jacobi structure onM
(see [5, 6]).

If the vector fieldE vanishes, then{ , } satisfies the Leibniz rule and it is a Poisson
bracket onM. In this case,(M,3) is a Poisson manifold. The Jacobi manifolds were
introduced by Lichnerowicz [9].

The canonical examples of Jacobi manifolds (apart from symplectic and Poisson
manifolds) are the contact and locally conformal symplectic manifolds.

Let M be a(2m+ 1)-dimensional manifold andη a 1-form onM. We say thatη is a
contact 1-form ifη ∧ (dη)m 6= 0 at every point. In such a case,(M, η) is termed a contact
manifold [1, 2]. A contact manifold(M, η) is a Jacobi manifold. In fact, the pair(3,E) is
a Jacobi structure onM, where

3(α, β) = dη([−1(α), [−1(β)) E = [−1(η) (8)

for α, β ∈ �1(M), with [ : x(M)→ �1(M) the isomorphism ofC∞(M,R)-modules defined
by [(X) = iXdη+ η(X)η. The vector fieldE is called the Reeb vector field ofM and it is
characterized by the relationsiEη = 1 andiE dη = 0.

On the other hand, let us recall that an almost symplectic manifold is a pair(M,�),
whereM is an even-dimensional manifold and� is a non-degenerate 2-form onM. An
almost symplectic manifold is said to be locally conformal symplectic (LCS) if there exists
a closed 1-formω such that d� = ω ∧�. The 1-formω is called the Lee 1-form ofM. If
(M,�) is a LCS manifold then the pair(3,E) is a Jacobi structure onM, where

3(α, β) = �([−1(α), [−1(β)) E = [−1ω

for α, β ∈ �1(M), with [ : x(M)→ �1(M) the isomorphism ofC∞(M,R)-modules defined
by [(X) = iX�.

Now, let (M,3,E) be a Jacobi manifold. Define aC∞(M,R)-linear mapping
# :�1(M)→ x(M) by

(#α)(β) = 3(α, β)
for α, β ∈ �1(M). Then, iff ∈ C∞(M,R), the vector fieldXf given byXf = #(df )+fE,
is called the Hamiltonian vector field associated withf . It should be noted that the
Hamiltonian vector field associated with the constant function 1 is justE. A direct
computation shows that [Xf ,Xg] = X{f,g} [9, 10]. Denote byDx the subspace ofTxM
generated by all the Hamiltonian vector fields evaluated at the pointx ∈ M. In other



5432 R Ibáñez et al

words,Dx = #x(T ∗x M)+ 〈Ex〉. SinceD is involutive, one easily follows thatD defines a
generalized foliation onM, which is called the characteristic foliation. It is proved that the
leaves ofD are contact or LCS manifolds (for a detailed study we refer to [3]).

Next, we recall the definition of conformally equivalent Jacobi structures (see [7, 9]).
Let (M,3,E) be a Jacobi manifold anda a function without zeros that belongs to

C∞(M,R). Let us consider the 2-vector3a and the vector fieldEa onM given by

3a = a3 Ea = #(da)+ aE = Xa.
Then, the pair(3a,Ea) is a Jacobi structure onM. The brackets{ , } and { , }a are related
by

{f, g}a = 1

a
{af, ag} ∀f, g ∈ C∞(M,R).

We say that the Jacobi structures(3,E) and(3a,Ea) are conformally equivalent.

Remark 2.5. Since all manifolds are assumed to be connected we have thata is either a
positive or negative function. For the sake of symplicity, and without loss of generality, we
will always suppose thata is a positive function.

Let φ: (M1,31, E1) → (M2,32, E2) be a differentiable mapping between the Jacobi
manifolds (M1,31, E1) and (M2,32, E2). Suppose that{ , }1 (respectively,{ , }2) is the
Jacobi bracket onM1 (respectively,M2).

The mappingφ is said to be a Jacobi morphism [3] if{f2, g2}2 ◦ φ = {f2 ◦ φ, g2 ◦ φ}1
for f2, g2 ∈ C∞(M2,R) or, equivalently, if

31(φ
∗α2, φ

∗β2) = 32(α2, β2) ◦ φ φ∗E1 = E2 (9)

for α2, β2 ∈ �1(M2).
Now, if a is a positive function onM1 then the pair(a, φ) is called a conformal

Jacobi morphism [3] if the mappingφ is a Jacobi morphism between the Jacobi
manifolds (M1, (31)a, (E1)a) and (M2,32, E2). The conformal Jacobi isomorphisms are
the conformal Jacobi morphisms(a, φ) such thatφ is a diffeomorphism.

A vector fieldX on a Jacobi manifold(M,3,E) is said to be a Jacobi infinitesimal
transformation if

LX3 = 0 LXE = 0 (10)

and it is a conformal Jacobi infinitesimal transformation if there existsg ∈ C∞(M,R) such
that [3, 7, 9]

LX3 = g3 LXE = #(dg)+ gE = Xg. (11)

In what follows, the pair (g,X) will be called a conformal Jacobi infinitesimal
transformation.

Note that the Hamiltonian vector fields are conformal Jacobi infinitesimal
transformations. In fact, iff ∈ C∞(M,R) then

LXf 3 = −E(f )3 LXf E = −#(d(E(f )))− E(f )E = −XE(f ). (12)

In particular, iff is a basic function (that is,E(f ) = 0) thenXf is a Jacobi infinitesimal
transformation.
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3. Contact transformations and Legendre submanifolds

In this section, we will obtain some results on a particular class of conformal Jacobi
morphisms between contact manifolds, the contact transformations. Also, we will study the
relation between the contact transformations and the Legendre submanifolds. The general
study on conformal Jacobi morphisms between arbitrary Jacobi manifolds will be discussed
in sections 4–6. However, the results obtained in this section provide a good motivation
for such a study.

3.1. Legendre submanifolds in a contact manifold

Let (M, η) be a(2m + 1)-dimensional contact manifold. Denote by(3,E) its associated
Jacobi structure, and by[ : x(M) → �1(M) the isomorphism ofC∞(M,R)-modules
defined by[(X) = iXdη + η(X)η, for X ∈ x(M).

If x ∈ M then a direct computation, using (8), proves that

#x(α) = −[−1
x (α)+ α(Ex)Ex (13)

for α ∈ T ∗x M. Thus, the linear mapping #x : T ∗x M → 〈ηx〉0 is an epimorphism and
Ker #x = 〈ηx〉. In particular, the linear mapping #x : 〈Ex〉0→ 〈ηx〉0 is an isomorphism.

Now, let F be the 2m-dimensional distribution onM given byη = 0. F is called the
contact distribution ofM. It is well known (see, for example, [2]) that there exist integral
submanifolds of the contact distributionF of dimensionm but of no higher dimension.

Definition 3.1. A submanifoldS of M is said to be a Legendre submanifold [7] if it is a
m-dimensional integral submanifold of the contact distribution.

Note that ifS is a Legendre submanifold ofM andx ∈ S then

([x(u))(v) = dηx(u, v) = 0

for u, v ∈ TxS. Using this fact and (13), we conclude that:

Proposition 3.2. Let (M, η) be a contact manifold andS a submanifold ofM. Then,S is
a Legendre submanifold ofM if and only if

#x(TxS)
0 = TxS

for x ∈ S.

3.2. Contact transformations and Legendre submanifolds

We recall the definition of a contact transformation (see [2, 7, 9]).

Definition 3.3. Let φ : (M1, η1) → (M2, η2) be a diffeomorphism between the contact
manifolds(M1, η1) and(M2, η2) and suppose thata is a positive function onM1. The pair
(a, φ) is said to be a contact transformation if

φ∗η2 = aη1.

The conformal Jacobi isomorphisms between two contact manifolds are just the contact
transformations. In fact, we have (see [9]):
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Proposition 3.4. Let φ : (M1, η1) → (M2, η2) be a differentiable mapping between the
contact manifolds(M1, η1) and (M2, η2) and suppose thata is a positive function onM1.
Then, the pair(a, φ) is a conformal Jacobi isomorphism if and only if the pair(1/a, φ) is
a contact transformation.

Next, we will show that the product of two contact manifolds withR is a contact
manifold. This result will be useful in the following.

Proposition 3.5. Let (M1, η1) and (M2, η2) be contact manifolds with Reeb vector fields
E1 andE2, respectively. Ift is the usual coordinate onR then the 1-formη on the product
manifoldM1×M2× R given by

η = η1− e−t η2 (14)

is a contact 1-form. The Reeb vector field of(M1×M2× R, η) is E1.

Proof. It follows from a direct computation. �

Remark 3.6. Using (8) and proposition 3.5, we obtain that the Jacobi structure(3,E) on
the contact manifold(M1×M2× R, η) is

3 = 31+ ∂

∂t
∧ E1− et

(
32− ∂

∂t
∧ E2

)
E = E1

where(31, E1) and(32, E2) are the Jacobi structures ofM1 andM2, respectively.

The following result justifies the definition of the contact 1-formη on the product manifold
M1×M2× R.

Theorem 3.7. Let φ : (M1, η1) → (M2, η2) be a diffeomorphism between the contact
manifolds(M1, η1) and(M2, η2). Suppose thata is a positive function onM1, andS is the
submanifold of the product manifoldM1×M2× R defined by

S =
{(
x1, φ(x1), ln

1

a(x1)

)
∈ M1×M2× R/x1 ∈ M1

}
.

Then, the pair(a, φ) is a conformal Jacobi isomorphism if and only ifS is a Legendre
submanifold of(M1 ×M2 × R, η), η being the contact 1-form onM1 ×M2 × R given by
(14).

Proof. If x1 is a point ofM1 andz = (x1, φ(x1), ln(1/a(x1))) is the corresponding point
of the submanifoldS then the tangent spaceTzS is the subspace ofTz(M1 ×M2 × R) ≈
Tx1M1⊕ Tφ(x1)M2⊕ Tln(1/a(x1))R given by

TzS =
{(
v1, φ

x1∗ v1,
−v1(a)

a(x1)

(
∂

∂t

) ∣∣∣∣
ln(1/a(x1))

)
∈ Tz(M1×M2× R)/v1 ∈ Tx1M1

}
.

Thus, since dimS = dimM1 = dimM2, we prove the result using (14), definition 3.3 and
proposition 3.4. �

From theorem 3.7, we conclude:

Corollary 3.8. Let φ : (M1, η1) → (M2, η2) be a diffeomorphism between the contact
manifolds (M1, η1) and (M2, η2). Then, φ is a Jacobi isomorphism if and only if
Graphφ×{0} is a Legendre submanifold of(M1×M2×R, η), η being the contact 1-form
onM1×M2× R given by (14).
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3.3. Contact infinitesimal transformations and Legendre submanifolds

We recall the definition of a contact infinitesimal transformation (see [7, 9]).

Definition 3.9. Let (M, η) be a contact manifold andX a vector field onM. If f is aC∞

function onM then the pair(f,X) is said to be a contact infinitesimal transformation if

LXη = f η.
The conformal Jacobi infinitesimal transformations in a contact manifold are just the contact
infinitesimal transformations. In fact, we have [9] the following.

Proposition 3.10. Let (M, η) be a contact manifold,X a vector field onM andf a C∞

function onM. Then, the pair(f,X) is a conformal Jacobi infinitesimal transformation if
and only if the pair(−f,X) is a contact infinitesimal transformation.

Now, we will prove that the product ofR with the tangent bundleTM of a contact
manifoldM is also a contact manifold.

Proposition 3.11. Let (M, η) be a contact manifold with Reeb vector fieldE and η̄ the
1-form on the product manifoldR× TM defined by

η̄ = ηc+ sηv (15)

wheres is the usual coordinate onR andηc (respectively,ηv) is the complete (respectively,
vertical) lift of η to TM. Then,(R× TM, η̄) is a contact manifold with Reeb vector field
the vertical liftEv of E to TM.

Proof. If X is a vector field onM we will denote byXc (respectively,Xv) the complete
(respectively, vertical) lift ofX to TM.

Let [̄ : x(R×TM)→ �1(R×TM) be the homomorphism ofC∞(R×TM,R)-modules
defined by

[̄(X̄) = iX̄ dη̄ + η̄(X̄)η̄
for X̄ ∈ x(R× TM). If X is a vector field onM such thatη(X) = 0 then, using (15) and
the results of [17], we have that

[̄(Xv) = [(X)v [̄(Xc) = [(X)c+ s[(X)v

[̄(Ev) = ηc+ sηv = η̄ [̄(Ec) = −ds + sη̄ [̄

(
∂

∂s

)
= ηv.

Thus [̄ is an isomorphism ofC∞(R× TM,R)-modules which implies that(R× TM, η̄) is
a contact manifold (see [1]). Moreover, since[̄(Ev) = η̄, we deduce thatEv is the Reeb
vector field of the contact manifold(R× TM, η̄). �

Remark 3.12. Using (8), proposition 3.11 and the results of [17] we obtain that the Jacobi
structure(3̄, Ē) on the contact manifold(R× TM, η̄) is

3̄ = 3c+ ∂

∂s
∧ Ec− s

(
3v + ∂

∂s
∧ Ev

)
Ē = Ev.

The following result justifies the definition of the contact 1-formη̄ on the product manifold
R× TM.
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Theorem 3.13. Let (M, η) be a contact manifold. Suppose thatX is a vector field onM
and denote byf ×X :M → R× TM the mapping

x ∈ M → (f ×X)(x) = (f (x),X(x)) ∈ R× TM
f being aC∞ function onM. Then, the pair(f,X) is a conformal Jacobi infinitesimal
transformation if and only if(f ×X)(M) is a Legendre submanifold of the contact manifold
(R× TM, η̄), whereη̄ is the 1-form onR× TM given by (15).

Proof. If S = (f × X)(M), x is a point ofM and z = (f (x),Xx) ∈ S then the tangent
spaceTzS is the subspace ofTz(R× TM) ≈ Tf (x)R⊕ TXx (TM) given by

TzS =
{(
v(f )

∂

∂t

∣∣∣∣
f (x)

, Xx∗(v)

)
∈ Tz(R× TM)/v ∈ TxM

}
. (16)

On the other hand, from the results of [17], we deduce that

X∗(ηc) = LXη ηv
Xx
◦Xx∗ = ηx. (17)

Therefore, since dimS = dimM, we prove the result using (15)–(17), definition 3.9 and
proposition 3.10. �

Finally, from theorem 3.13, we conclude:

Corollary 3.14. Let (M, η) be a contact manifold andX a vector field onM. Then,X is
a Jacobi infinitesimal transformation if and only if{0} ×X(M) is a Legendre submanifold
of (R× TM, η̄), η̄ being the contact 1-form onR× TM given by (15).

3.4. The symplectification of a contact manifold

Let M be a (2m + 1)-dimensional manifold andη a 1-form onM. We consider on the
product manifoldM × R the 2-form� given by

� = et dη + et dt ∧ η. (18)

From (18), we deduce thatη is a contact 1-form onM if and only if � is a symplectic
2-form onM × R.

If (M, η) is a contact manifold then the symplectic manifold(M × R, �) is called the
symplectification ofM (see [7]).

Suppose that(M, η) is a contact manifold and denote by(3,E) its associated Jacobi
structure, and by3̃ the Poisson structure on the symplectification(M × R, �). A direct
computation, using (1) and (18), proves that

3̃ = e−t3+ e−t
∂

∂t
∧ E. (19)

Next, we will study the relation between the Legendre submanifolds ofM and the
Lagrangian submanifolds ofM × R.

Theorem 3.15. Let (M, η) be a contact manifold,S a submanifold ofM and(M ×R, �)
the symplectification ofM. Then,S is a Legendre submanifold ofM if and only if S × R
is a Lagrangian submanifold of the symplectic manifold(M × R, �).



Co-isotropic and Legendre–Lagrangian submanifolds 5437

Proof. If N is a 2n-dimensional symplectic manifold andD is the symplectic foliation of
N , thenDx = TxN for x ∈ N . Thus, a submanifold̃S of N is Lagrangian if and only if
dim S̃ = n and #x(TxS̃)0 ⊆ TxS̃ for x ∈ S̃ (see (5)).

On the other hand, ifx0 ∈ M andt0 ∈ R then, under the identificationT ∗(x0,t0)
(M×R) ≈

T ∗x0
M ⊕ T ∗t0R, we have that(Tx0S)

0⊕ {0} = T(x0,t0)(S × R)0.
Using these facts, (13), (19) and proposition 3.2, we prove the result. �

Now, we will show that a conformal Jacobi isomorphism between two contact manifolds
induces a symplectic isomorphism (or equivalently a Poisson isomorphism) between the
corresponding symplectifications. In fact, we obtain:

Theorem 3.16. Let φ : (M1, η1) → (M2, η2) be a diffeomorphism between the contact
manifolds(M1, η1) and (M2, η2). Suppose thata is a positive function onM1 and denote
by φ̃a :M1× R→ M2× R the diffeomorphism defined by

φ̃a(x1, p) = (φ(x1), p + ln(a(x1))). (20)

Then, the pair(a, φ) is a conformal Jacobi isomorphism if and only ifφ̃a is a symplectic
isomorphism between the symplectifications(M1 × R, �1) and (M2 × R, �2) of M1 and
M2, respectively.

Proof. It follows from definition 3.3, proposition 3.4, (18) and (20). �

Finally, we will see that a conformal Jacobi infinitesimal transformation in a
contact manifold induces a symplectic infinitesimal transformation of the corresponding
symplectification.

Theorem 3.17. Let (M, η) be a contact manifold,X a vector field andf a C∞ function
onM. Then, the pair(f,X) is a conformal Jacobi infinitesimal transformation if and only
if the vector fieldX̃f onM × R given by

X̃f = X + f ∂
∂t

(21)

is a symplectic infinitesimal transformation of the symplectification(M × R, �) of M.

Proof. It follows using definition 3.9, proposition 3.10, (18) and (21). �

4. Co-isotropic and Legendre–Lagrangian submanifolds in a Jacobi manifold

In this section, we introduce and characterize the notion of a co-isotropic and Legendre–
Lagrangian submanifold in a Jacobi manifold.

Definition 4.1. Let (M,3,E) be a Jacobi manifold with characteristic foliationD andS
a submanifold ofM. The submanifoldS is said to be:

(i) co-isotropic if

#x(TxS)
0 ⊆ TxS (22)

for x ∈ S;
(ii) Legendre–Lagrangian if

#x(TxS)
0 = TxS ∩Dx (23)

for x ∈ S.
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Remark 4.2. (i) Definition 4.1 generalizes for Jacobi manifolds the notion of a co-isotropic
and Lagrangian submanifold in a Poisson manifold (see (4), (5), (22) and (23)).

(ii) Let (M, η) be a contact manifold andS a submanifold ofM. Suppose that(3,E)
is the associated Jacobi structure onM. Then,S is a Legendre submanifold of the contact
manifold (M, η) if and only if S is a Legendre–Lagrangian submanifold of the Jacobi
manifold (M,3,E) (see (23) and proposition 3.2). Note that, in this case,Dx = TxM for
x ∈ M.

Next, we prove a result which will be useful in the following.

Lemma 4.3. Let (M,3,E) be a Jacobi manifold andS a Legendre–Lagrangian
submanifold ofM. Suppose thatx0 is a point ofS such thatEx0 6∈ #x0(T

∗
x0
M). Then,

there exists a 1-formηx0 onM at x0 such thatηx0 ∈ (Tx0S)
0, ηx0(Ex0) = 1 and #x0(ηx0) = 0.

Proof. Using (23), we deduce thatTx0S ∩Dx0 = Tx0S ∩ #x0(T
∗
x0
M). Assume that the rank

of 3 at x0 is 2r. Then,

3x0 =
r∑
i=1

ui ∧ vi (24)

with {u1, . . . , ur , v1, . . . , vr} a linearly independent system inTx0M. From (24), we obtain
that

#x0(T
∗
x0
M) = 〈u1, . . . , ur , v1, . . . , vr〉. (25)

Let Wx0 be a subspace ofTx0S such that

Tx0S = (Tx0S ∩Dx0)⊕Wx0 = (Tx0S ∩ #x0(T
∗
x0
M))⊕Wx0. (26)

If dimWx0 = s and {w1, . . . , ws} is a basis ofWx0 then, using (25), (26) and the fact that
Ex0 6∈ #x0(T

∗
x0
M), we have that{u1, . . . , ur , v1, . . . , vr , Ex0, w1, . . . , ws} is also a linearly

independent system inTx0M.
Now, suppose that{u1, . . . , ur , v1, . . . , vr , Ex0, w1, . . . , ws, z1, . . . , zp} is a basis of

Tx0M and that{α1, . . . , αr , β1, . . . , βr , ηx0, γ1, . . . , γs, ν1, . . . , νp} is the dual basis ofT ∗x0
M.

Then, from (24)–(26), we conclude thatηx0 ∈ (Tx0S)
0, ηx0(Ex0) = 1 and #x0(ηx0) = 0. �

Let M be a differentiable manifold,3 a 2-vector andE a vector field onM. We consider
on the product manifoldM × R the 2-vector3̃ given by

3̃ = e−t3+ e−t
∂

∂t
∧ E (27)

t being the usual coordinate onR.
We have that the pair(3,E) is a Jacobi structure onM if and only if 3̃ is a Poisson

structure onM × R (see [9]).
If (M,3,E) is a Jacobi manifold then the product manifoldM × R with the structure

3̃ was called by Lichnerowicz [9] the tangentially exact Poisson manifold associated with
M. In what follows, and taking into account the fact that for a contact manifold(M, η),
3̃ is just its symplectification, we will call it the Poissonization of the Jacobi manifold
(M,3,E).
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Theorem 4.4. Let (M,3,E) be a Jacobi manifold,S a submanifold ofM and(M×R, 3̃)
the Poissonization ofM. Then:

(i) S is a co-isotropic submanifold ofM if and only if S×R is a co-isotropic submanifold
of the Poisson manifold(M × R, 3̃);

(ii) S is a Legendre–Lagrangian submanifold ofM if and only if S×R is a Lagrangian
submanifold of the Poisson manifold(M × R, 3̃).

Proof. If x0 ∈ S and t0 ∈ R then, under the identificationT ∗(x0,t0)
(M ×R) ≈ T ∗x0

M ⊕ T ∗t0R,
we have that(Tx0S)

0⊕ {0} = T(x0,t0)(S × R)0. Using this fact, (4), (22) and (27) we prove
(i).

Now, suppose thatS × R is a Lagrangian submanifold of the Poisson manifold
(M × R, 3̃). Then, from (5), (23) and (27), we deduce thatS is a Legendre–Lagrangian
submanifold ofM.

Conversely, letS be a Legendre–Lagrangian submanifold ofM. If x0 ∈ S and t0 ∈ R
then, using (23) and (27), we obtain that#̃(x0,t0)(α) ∈ T(x0,t0)(S × R) ≈ Tx0S ⊕ Tt0R, for
α ∈ T(x0,t0)(S × R)0 ≈ (Tx0S)

0⊕ {0}. This shows that

#̃(x0,t0)(T(x0,t0)(S × R)0) ⊆ #̃(x0,t0)(T
∗
(x0,t0)

(M × R)) ∩ T(x0,t0)(S × R).
Next, we will prove that

#̃(x0,t0)(T
∗
(x0,t0)

(M × R)) ∩ T(x0,t0)(S × R) ⊆ #̃(x0,t0)(T(x0,t0)(S × R)0)

which implies thatS×R is a Lagrangian submanifold of the Poisson manifold(M×R, 3̃).
Let α be a 1-form onM at x0 and λ a real number such that̃#(x0,t0)(α + λ dt |t0) ∈

T(x0,t0)(S ×R) ≈ Tx0S ⊕ Tt0R. From (23) and (27), we deduce that there existsβ ∈ (Tx0S)
0

such that

#x0(β) = #x0(α)+ λEx0. (28)

We will see that there existsγ ∈ (Tx0S)
0 satisfying

#x0(γ ) = #x0(α)+ λEx0 γ (Ex0) = α(Ex0) (29)

which shows that̃#(x0,t0)(α + λ dt |t0) ∈ #̃(x0,t0)(T(x0,t0)(S × R)0) (see (27)).
We distinguish two cases.
(a) Suppose thatEx0 ∈ #x0(T

∗
x0
M). In such a case, there is a 1-formωx0 on M at x0

such that #x0(ωx0) = Ex0. We have thatωx0(Ex0) = 0 and, using (28), we conclude that
α(Ex0) = β(Ex0). Thus, the 1-formβ ∈ (Tx0S)

0 satisfies (29).
(b) Suppose thatEx0 6∈ #x0(T

∗
x0
M). In this case, we consider a 1-formηx0 ∈ (Tx0S)

0

such thatηx0(Ex0) = 1 and #x0(ηx0) = 0 (see lemma 4.3). Then, the 1-formγ =
β + (α(Ex0)− β(Ex0))ηx0 ∈ (Tx0S)

0 satisfies (29). �

Remark 4.5. Actually, theorem 3.15 is a corollary of theorem 4.4.

5. Conformal Jacobi morphisms and co-isotropic submanifolds

In this section, we will study conformal Jacobi morphisms and we will obtain a
generalization of theorems 2.2 and 3.7.

For this purpose, we prove the following.
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Proposition 5.1. If (M1,31, E1) and (M2,32, E2) are Jacobi manifolds,t is the usual
coordinate onR and3 andE are the 2-vector and the vector field, respectively, on the
product manifoldM1×M2× R given by

3 = 31+ ∂

∂t
∧ E1− et

(
32− ∂

∂t
∧ E2

)
E = E1 (30)

then(M1×M2× R,3,E) is a Jacobi manifold.

Proof. It follows from a direct computation using (6). �

Remark 5.2. If M1 andM2 are Poisson manifolds then, from proposition 5.1, we deduce
that the 2-vector3 given by3 = 31 − et32 defines a Poisson structure on the product
manifold M1 × M2 × R. Moreover, the natural restriction3N of 3 to the submanifold
N = M1×M2× {0} also defines a Poisson structure onN . In fact, the identification

M1×M2→ M1×M2× {0} (x1, x2)→ (x1, x2, 0)

is a Poisson isomorphism between the Poisson manifolds(M1×M2, 3̄) and(N,3N), where
3̄ = 31−32.

Remarks 3.6 and 5.2 and the following result (announced at the beginning of this section)
justify the definition of the Jacobi structure(3,E) given by (30).

Theorem 5.3. Let φ : (M1,31, E1)→ (M2,32, E2) be a differentiable mapping between
the Jacobi manifolds(M1,31, E1) and(M2,32, E2). Suppose thata is a positive function
onM1 and thatS is the submanifold of the product manifoldM1×M2× R defined by

S =
{(
x1, φ(x1), ln

1

a(x1)

)
∈ M1×M2× R/x1 ∈ M1

}
. (31)

Then, the pair(a, φ) is a conformal Jacobi morphism if and only ifS is a co-isotropic
submanifold of(M1×M2×R,3,E), where(3,E) is the Jacobi structure onM1×M2×R
given by (30).

Proof. We consider the mapping̃φa :M1× R→ M2× R defined by

φ̃a(x1, p) = (φ(x1), p + ln(a(x1))) (32)

for x1 ∈ M1 andp ∈ R.
From (2), (9), (27) and (32), we deduce that the pair(a, φ) is a conformal Jacobi

morphism if and only if the mapping̃φa is a Poisson morphism between the Poissonizations
(M1 × R, 3̃1) and (M2 × R, 3̃2) of the Jacobi manifoldsM1 andM2, respectively (see
theorem 3.16).

Now, denote byψ : (M1×M2×R)×R→ (M1×R)× (M2×R) the diffeomorphism
given by

ψ((x1, x2, t), s) = ((x1, s), (x2, s − t)) (33)

for x1 ∈ M1, x2 ∈ M2 and t, s ∈ R.
Let ((M1 × M2 × R) × R, 3̃) be the Poissonization of the Jacobi manifold(M1 ×

M2×R,3,E). Then, using (27), (30) and (33), we obtain thatψ is a Poisson isomorphism
between the Poisson manifolds((M1×M2×R)×R, 3̃) and((M1×R)×(M2×R), 3̃1−3̃2).
Moreover, from (31)–(33), we have that

ψ(S × R) = Graphφ̃a.

Thus, using theorems 2.2 and 4.4, we prove our result. �
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Remark 5.4. Let (M, η) be a(2m+1)-dimensional contact manifold andS a submanifold
of M. Then, S is a Legendre submanifold ofM if and only if S is co-isotropic and
dimS = m (see (13) and proposition 3.2). Therefore, theorem 5.3 generalizes theorem 3.7.

From theorem 5.3, we conclude

Corollary 5.5. Let φ : (M1,31, E1)→ (M2,32, E2) be a differentiable mapping between
the Jacobi manifolds(M1,31, E1) and(M2,32, E2). Then,φ is a Jacobi morphism if and
only if Graphφ×{0} is a co-isotropic submanifold of(M1×M2×R,3,E), where(3,E)
is the Jacobi structure onM1×M2× R given by (30).

Remark 5.6. Using corollary 5.5 and remarks 4.2 and 5.2, we directly deduce theorem 2.2.

6. Conformal Jacobi infinitesimal transformations and Legendre–Lagrangian
submanifolds

In this section, we will study conformal Jacobi infinitesimal transformations and we will
obtain a generalization of theorems 2.3 and 3.13.

For this purpose, we prove:

Proposition 6.1. Let (M,3,E) be a Jacobi manifold and̄3 the 2-vector on the product
manifoldR× TM defined by

3̄ = 3c+ ∂

∂s
∧ Ec− s

(
3v + ∂

∂s
∧ Ev

)
(34)

wheres is the usual coordinate onR, 3c (respectively,3v) is the complete (respectively,
vertical) lift to TM of 3 andEc (respectively,Ev) is the complete (respectively, vertical)
lift to TM of E. Then, the pair(3̄, Ev) is a Jacobi structure onR× TM.

Proof. Using (6) and the results of [17], we deduce that

[3c,3c] = [3,3]c = 2(Ec ∧3v + Ev ∧3c) [3v,3v] = 0

[3c,3v] = [3,3]v = 2Ev ∧3v. (35)

We also have

[3c, Ec] = [3,E]c = 0 [3c, Ev] = [3,E]v = 0

[3v, Ec] = [3,E]v = 0 [3v, Ev] = 0. (36)

Thus, from (34)–(36), we conclude that the pair(3̄, Ev) is a Jacobi structure onR×TM. �

Remark 6.2. If (M,3) is a Poisson manifold then, using proposition 6.1, we obtain that
the 2-vector3̄ = 3c− s3v defines a Poisson structure onR× TM. Moreover, the natural
restriction3̄N of 3̄ to the submanifoldN = {0} × TM also defines a Poisson structure on
N . In fact, the diffeomorphism

TM → {0} × TM v→ (0, v)

is a Poisson isomorphism between the Poisson manifolds(TM,3c) and(N, 3̄N).

If f ∈ C∞(M,R), we will denote byf c (respectively,f v) the complete (respectively,
vertical) lift to TM of f . Then, from (7), (34) and the results of [17], we have:
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Corollary 6.3. Let (M,3,E) be a Jacobi manifold,̄3 the 2-vector onR× TM given by
(34) andEv the vertical lift toTM of E. Suppose that{ , }R×TM (respectively,{ , }M ) is
the Jacobi bracket of(R× TM, 3̄,Ev) (respectively,(M,3,E)). Then

{f c, gc}R×TM − {f, g}cM + s{f, g}vM=f v(E(g))c− gv(E(f ))c+ sgv(E(f ))v−sf v(E(g))v

{f c, gv}R×TM − (1− s){f, g}vM = (s − 1)f v(E(g))v − sgv(E(f ))v

{f v, gv}R×TM = 0 {s, f c}R×TM = (E(f ))c {s, f v}R×TM = (E(f ))v
for f , g ∈ C∞(M,R).

Using corollary 6.3, we deduce:

Corollary 6.4. Let (M,3,E) be a Jacobi manifold,̄3 the 2-vector onR× TM given by
(34) andEv the vertical lift to TM of E. If { , }R×TM (respectively,{ , }M ) is the Jacobi
bracket of(R × TM, 3̄,Ev) (respectively,(M,3,E)) and f , g ∈ C∞(M,R) are basic
functions (that is,E(f ) = E(g) = 0), then

{f c, gc}R×TM = {f, g}cM − s{f, g}vM
{f c, gv}R×TM = (1− s){f, g}vM
{f v, gv}R×TM = {s, f c}R×TM = {s, f v}R×TM = 0.

Remarks 3.12 and 6.2 and the following result (announced at the beginning of this section)
justify the definition of the Jacobi structure(3̄, Ev) on the product manifoldR× TM.

Theorem 6.5. Let (M,3,E) be a Jacobi manifold. Suppose thatX is a vector field onM
and denote byf ×X : M → R× TM the mapping

x ∈ M → (f ×X)(x) = (f (x),X(x)) ∈ R× TM (37)

f being aC∞ function onM. Then, the pair(f,X) is a conformal Jacobi infinitesimal
transformation if and only if(f × X)(M) is a Legendre–Lagrangian submanifold of the
Jacobi manifold(R× TM, 3̄,Ev), whereEv is the vertical lift toTM of E and 3̄ is the
2-vector onR× TM given by (34).

Proof. Let (M × R, 3̃) be the Poissonization ofM.
Using the results of [9] we have that the pair(f,X) is a conformal Jacobi infinitesimal

transformation if and only if the vector field̃Xf = X + f ∂/∂t is a Poisson infinitesimal
transformation of the Poisson manifold(M × R, 3̃) (see theorem 3.17).

Now, denote byψ : (R× TM)× R→ T (M × R) the diffeomorphism defined by

ψ((s, v), p) = v + s ∂
∂t

∣∣∣∣
p

(38)

for v ∈ TM ands, p ∈ R.

If ((R×TM)×R, ˜̄3) is the Poissonization of the Jacobi manifold(R×TM, 3̄,Ev) then,
using (27), (34), (38) and the results of [17], we deduce thatψ is a Poisson isomorphism

between the Poisson manifolds((R × TM) × R, ˜̄3) and (T (M × R), 3̃c). Furthermore,
from (37) and (38), we obtain that

ψ((f ×X)(M)× R) = X̃f (M × R).
Therefore, using theorems 2.3 and 4.4, we prove our result. �
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Remark 6.6. Theorem 6.5 generalizes theorem 3.13.

From theorem 6.5, we conclude:

Corollary 6.7. Let (M,3,E) be a Jacobi manifold andX a vector field onM. Then,X is
a Jacobi infinitesimal transformation if and only if{0} × X(M) is a Legendre–Lagrangian
submanifold of the Jacobi manifold(R× TM, 3̄,Ev), whereEv is the vertical lift toTM
of E and3̄ is the 2-vector onR× TM given by (34).

Remark 6.8. Using corollary 6.7 and remarks 4.2 and 6.2, we directly deduce the second
part of theorem 2.3.

From (10)–(12), theorem 6.5 and corollary 6.7, we obtain:

Corollary 6.9. Let (M,3,E) be a Jacobi manifold andf aC∞-function onM. Suppose
thatEv is the vertical lift toTM of E and that3̄ is the 2-vector onR×TM given by (34).

(i) If Xf is the Hamiltonian vector field associated withf then (−E(f ) × Xf )(M) is
a Legendre–Lagrangian submanifold of the Jacobi manifold(R× TM, 3̄,Ev).

(ii) If f is a basic function then{0} × Xf (M) is a Legendre–Lagrangian submanifold
of the Jacobi manifold(R× TM, 3̄,Ev).
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