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Abstract. The notion of a co-isotropic and Legendre—Lagrangian submanifold of a Jacobi
manifold is given. A characterization of conformal Jacobi morphisms and conformal Jacobi
infinitesimal transformations is obtained as co-isotropic and Legendre—Lagrangian submanifolds
of Jacobi manifolds.

1. Introduction

In [14], Tulczyjew characterized a locally Hamiltonian vector field on a symplectic manifold
(M, Q) as a Lagrangian submanifold of the symplectic manifdd/, Q°), whereT M is

the tangent bundle oM and Q° is the complete or tangent lift a2 to TM. This fact
permitted the introduction of the notion of a generalized Hamiltonian system as a Lagrangian
submanifold of(T M, Q°), and the discussion of, for instance, implicit differential equations
(see, for instance, [11,12]).

Recently, this result was extended by Grabowski andabiski [4] for Poisson manifolds.
They proved that the tangent bundleVf of a Poisson manifold M, A) is canonically
endowed with a Poisson structure, namely, the complete\fifof A. Thus, they proved
that a vector field{ on M is a Poisson infinitesimal transformation (in other worlsis a
derivation of the algebr&aC>(M, R), {, })) if and only if its imageX (M) is a Lagrangian
submanifold of(T M, A®). Here, it is necessary to use a suitable definition of a Lagrangian
submanifold. In fact, a submanifoll of a Poisson manifold is Lagrangian if and only if
for every pointx of S the intersectiorl, S N D, is a Lagrangian subspace &%, where
T, S is the tangent space thatx and D, is the tangent space to the symplectic leafxby
Concerning Poisson morphisms, it was proved by Weinstein in [16] (see also [15]) that a
differentiable mapping : (M1, A1) — (M>, A,) between the Poisson manifold&f;, A;)
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and (M», A») is a Poisson morphism if and only if its graph is a co-isotropic submanifold
of the Poisson manifoldM, x M,, A1 — A5). This theorem extends the well known one
for symplectic manifolds. These two results are also independently obtaine@nohé de
Alvarez [13].

The purpose of our paper is to extend the results for the case of Jacobi manifolds.
Jacobi manifolds are more involved, and the extension is far from being trivial. In fact,
if we start with a Jacobi manifoldM, A, E) and try to define in a natural way a similar
structure on the tangent bundigVs, we would inevitably fail to do this. The reason is the
intrinsic conformal character of Jacobi structures. In fact, the Hamiltonian vector fields in a
Jacobi manifold are conformal Jacobi infinitesimal transformations. Thus, instead of using
Jacobi morphisms we have to use conformal Jacobi morphisms. This implies that we are
compelled to add an extra fact®to our Jacobi manifolds.

On the other hand, it is well known that the contact manifolds are canonical examples
of Jacobi manifolds. In fact, the leaves of odd dimension of the characteristic foliation of
a Jacobi manifold are contact manifolds (see [3] and section 2.2). Thus, as a first step, in
section 3, we study the particular case of contact manifolds. In particular, we characterize
the contact transformations (or equivalently, the conformal Jacobi isomorphisms) and the
contact infinitesimal transformations (or equivalently, the conformal Jacobi infinitesimal
transformations) in terms of Legendre submanifolds of contact manifolds (see theorems 3.7
and 3.13). The results obtained in this section provide a good motivation for the general
study of conformal Jacobi morphisms between arbitrary Jacobi manifolds which will be
introduced in sections 4-6. In these sections we generalize the results of section 3. More
precisely, we prove the following results.

(1) Given two Jacobi manifold$My, A1, E1) and (M», A», E5), the productM =
M1 x M> x R is endowed with a Jacobi structure

a ad
A=A1~|——/\E1—e’ Ar— — NE> E =E;.
at at

Thus, given a mapping: M; — M, and a positive function € C* (M1, R), we prove that
the pair(a, ¢) is a conformal Jacobi morphism if and onlysSif= {(x1, ¢ (x1), In(1/a(x1))) €
M1 x M, x R/x1 € M1} is a co-isotropic submanifold afM, A, E) (theorem 5.3).

(2) In the same vein, itM, A, E) is a Jacobi manifold, theR x T M is endowed in a
canonical way with a Jacobi structure given by

_ 0 0
A=A+ —AE°—s[A"+ — AEY
as as

where AV and EY (respectively, A® and E®) are the vertical (respectively, complete)
lifts of A and E to TM. Thus, we prove the following result. Given a vector field
X and a functionf on M, we denote byf x X : M — R x TM the mapping
xeM— (f x X)(x) = (f(x), X(x)) € R x TM. Then, the pair f, X) is a conformal
Jacobi infinitesimal transformation if and only ({ff x X)(M) is a Legendre—Lagrangian
submanifold of the Jacobi manifol® x 7M, A, EY) (theorem 6.5).

Here, the concept of a co-isotropic submanifold is the natural extension to Jacobi
manifolds of the notion of a co-isotropic submanifold in the setting of Poisson manifolds.
Also, the Legendre—Lagrangian submanifold is the natural extension to Jacobi manifolds of
the notions of Lagrangian and Legendre submanifolds in the setting of Poisson and contact
manifolds.

The above results are proved by defining the so-called Poissonization of a
Jacobi manifold (‘associated tangentially exact Poisson manifold’ in the terminology
of Lichnerowicz [9]). The Poissonization of a contact manifold coincides with its
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symplectification. This technique permits us to obtain the above results as a consequence
of the results of Grabowski and Uahski, taking into account the relation between the co-
isotropic and Legendre—Lagrangian submanifolds of a Jacobi manifold and the co-isotropic
and Lagrangian submanifolds of its Poissonization (theorem 4.4).

All the manifolds considered throughout this paper are assumed to be connected.

2. Poisson morphisms and conformal Jacobi morphisms

2.1. Poisson morphisms

Let N be aC* manifold. Denote by (N) the Lie algebra of the vector fields avi and
by C*(N, R) the algebra ofC> real-valued functions o®v. A Poisson bracket, } on N
is a bilinear mappind, } : C*(N,R) x C*®(N,R) — C*(N, R) satisfying the following
properties:

(1) (Skew-symmety( £, g} = —{g. f}.

(2) (Leibniz rulg {f. gh} = {f. gth + {f. hig.

(3) (Jacobi's identity {{f. g}, 1} + {{h. f}. g} + {{g. h}. f} = 0.

The pair(N, {, }) will be called a Poisson manifold.

In [8], Lichnerowicz gave a more compact definition of a Poisson manifold. Define a
2-vector A on N by A(df, dg) = {f,g}. Then [A, A] = 0, where [] is the Schouten—
Nijenhuis bracket. Conversely, let be a 2-vector orV and define a bracket of functions
{f, g} = A(df, dg). Then,{, } satisfies Jacobi’s identity if and only if\, A] = 0. Such a
2-vector A will be called a Poisson tensor.

The main examples of Poisson manifolds are symplectic manifolds. A symplectic
manifold is a pair(N, ), where N is an even-dimensional manifold arel is a closed
non-degenerate 2-form oM. We define a 2-vectoA on N by

A, B) = QO Ha), b 1(B)) 1)

for a, B € QL(N), whereQ(N) is the space of 1-forms oN andb :x(N) — QL(N) is
the isomorphism ofC*°(N, R)-modules defined by(X) = ix Q.

Let (N, A) be a Poisson manifold. Define@™® (N, R)-linear mapping # QY(N) —
x(N) as follows:

(#a) (B) = Ala, B)

fora, B € QY(N). If f e C®(N,R), the vector fieldX; = #(df) is called the Hamiltonian
vector field associated witl.

Denote by D, the subspace of, N generated by all the Hamiltonian vector fields
evaluated at the point € N or, in other words,D, = #.(7T;N). The distribution
x € N - D, € T,N is involutive (see [8]) and thus it defines a generalized foliation
on N. Since the leaves ab are symplectic manifolds (see [8]] is called the symplectic
foliation of N.

Now, let ¢ : (N1, A1) — (N2, Ap) be a differentiable mapping between the Poisson
manifolds (N1, A1) and (N2, Ap). Suppose that, }1 (respectively,{, },) is the Poisson
bracket onN; (respectively,N,). Then, the mapping is said to be a Poisson morphism if
{f2, 82}20¢ = {f200, g20 ¢} for f2, g2 € C*(N2, R) or, equivalently, if

A1(p oz, ¢*B2) = Az(ez, B2) 0 @ 2

for ao, fo € QL(Ny). If the Poisson morphism is a diffeomorphism thew is called a
Poisson isomorphism.
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Remark 2.1 Let (N1, 21) and (N2, Q2) be symplectic manifolds equipped with the
Poisson structures associated with their symplectic structures. If a differentiable mapping
¢ : N1 — N, is a Poisson morphism then it is necessarily a submersion. In the special
case whereV; and N, are of the same dimension, the mappihg N; — N, is a Poisson
morphism if and only if it is a (local) symplectic isomorphism (that ¢8,Q2, = Q1).
However, if dimN; > dim N, and ¢ is a Poisson morphism thep is not a symplectic
morphism (note that a symplectic morphism is necessarily an immersion) (for more details,
see [7]).

A vector field X in a Poisson manifold N, A) is said to be a Poisson infinitesimal
transformation (see [4,7, 8)) if its flow consists of Poisson isomorphisms, or, equivalently,
if

LxA =0 )

where/L is the Lie derivative orV. The Hamiltonian vector fields are Poisson infinitesimal
transformations.

If (N, ) is a symplectic manifold an&X a vector field onN, then X is a Poisson
infinitesimal transformation if and only iX is a symplectic infinitesimal transformation
(i.e. LxQ2 =0).

A submanifoldS of a Poisson manifoldN, A) is called co-isotropic [15, 16] if

#.(T.S)° C TS (4)

for x € S, (7,.5)° being the annihilator subspace BfS. The submanifolds is said to be
Lagrangian [4, 15] if

#.(T.5)° =T,.SN D,. (%)

The above definitions generalize the usual definitions of co-isotropic and Lagrangian
submanifold in a symplectic manifold.
We also have:

Theorem 2.2 [16]. Let¢ : (N1, A1) — (N2, Ay) be a differentiable mapping between the
Poisson manifoldgN1, A;) and (N2, Az). Then,¢ is a Poisson morphism if and only if
Graphg is a co-isotropic submanifold of the Poisson maniféhy x N2, A), A being the
2-vector onNy x N, given by A = A3 — As.

Theorem 2.3 [4,13]. LetX be a vector field on a Poisson manifgl, A). Then:

(i) the complete liftA® to TN of A is a Poisson structure dAN;

(i) X is a Poisson infinitesimal transformation if and onlyXf(V) is a Lagrangian
submanifold of(T N, A°).

Remark 2.4 If (N,Q) is a symplectic manifold then the complete Ift° of Q to

TN is a symplectic 2-form onl’ N. Moreover, if A is the Poisson structure oW
associated with the symplectic 2-for@ then the Poisson structure dhN associated

with the symplectic 2-forn2°¢ is just A®. Thus, theorems 2.2 and 2.3 generalize for the
Poisson manifolds the corresponding results on symplectic isomorphisms and symplectic
infinitesimal transformations (see [14]).
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2.2. Conformal Jacobi morphisms

A Jacobi structure oM is a pair(A, E) whereA is a 2-vector ands a vector field onM
satisfying

[A,A]=2EAA  LpA=[E,A]=0. (6)

The manifoldM endowed with a Jacobi structure is called a Jacobi manifoldMIfA, E)
is a Jacobi manifold we can define a bracket of functions (called a Jacobi bracket) as follows:

{f. g} =AWf, dg) + fE(®) —gE(f) forall f,g € C*(M,R). (7)

The mapping{, }:C*(M,R) x C*(M,R) — C>*(M,R) is bilinear, skew-symmetric,
satisfies the Jacobi’s identity and

support{ f, g} C supportf N supportg.

Thus, the spac& > (M, R) endowed with the Jacobi bracket is a local Lie algebra in
the sense of Kirillov (see [6]). Conversely, a structure of local Lie algebra on the space
C*(M,R) of real-valued functions on a manifol determines a Jacobi structure &h

(see [5, 6]).

If the vector field E vanishes, ther, } satisfies the Leibniz rule and it is a Poisson
bracket onM. In this case, (M, A) is a Poisson manifold. The Jacobi manifolds were
introduced by Lichnerowicz [9].

The canonical examples of Jacobi manifolds (apart from symplectic and Poisson
manifolds) are the contact and locally conformal symplectic manifolds.

Let M be a(2m + 1)-dimensional manifold ang a 1-form onM. We say that; is a
contact 1-form ifn A (dn)™ # 0 at every point. In such a casg{, n) is termed a contact
manifold [1, 2]. A contact manifoldM, n) is a Jacobi manifold. In fact, the pain, E) is
a Jacobi structure oM, where

Ala, B) = dn(>~ (@), b71(B)) E=b"1n) (8)

fora, B € QY(M), withb : x(M) — QY(M) the isomorphism o€ > (M, R)-modules defined
by b(X) = ixdn + n(X)n. The vector fieldE is called the Reeb vector field @f and it is
characterized by the relationgn = 1 andig dn = 0.

On the other hand, let us recall that an almost symplectic manifold is a(p&if2),
where M is an even-dimensional manifold a2l is a non-degenerate 2-form avf. An
almost symplectic manifold is said to be locally conformal symplectic (LCS) if there exists
a closed 1-formw such that & = w A Q. The 1-formw is called the Lee 1-form oM. If
(M, Q) is a LCS manifold then the paitA, E) is a Jacobi structure oM, where

A, B) = QO Ha), b (B)) E=b"o

fora, B € QY(M), withb : x(M) — QY(M) the isomorphism o€ (M, R)-modules defined
by b(X) = ixQ.

Now, let (M, A, E) be a Jacobi manifold. Define &*°(M, R)-linear mapping
#:QYM) - x(M) by

(#Ha)(B) = A, B)

fora, B € QY(M). Then, if f € C*(M, R), the vector fieldX given by X, =#df)+ fE,
is called the Hamiltonian vector field associated with It should be noted that the
Hamiltonian vector field associated with the constant function 1 is fust A direct
computation shows thatX[y, X,] = X(s, [9,10]. Denote byD, the subspace of M
generated by all the Hamiltonian vector fields evaluated at the poiat M. In other
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words, D, = #,(T M) + (E,). SinceD is involutive, one easily follows thab defines a
generalized foliation o4, which is called the characteristic foliation. It is proved that the
leaves ofD are contact or LCS manifolds (for a detailed study we refer to [3]).
Next, we recall the definition of conformally equivalent Jacobi structures (see [7, 9]).
Let (M, A, E) be a Jacobi manifold and a function without zeros that belongs to
C*(M, R). Let us consider the 2-vectar, and the vector fieldc, on M given by

A, =aA E,=#(a) +aFE = X,.

Then, the paifA,, E,) is a Jacobi structure oM. The brackety, } and{, }, are related
by

1
{f. gla= ;{af, ag) Vf g€ C*(M,R).

We say that the Jacobi structures, E) and (A,, E,) are conformally equivalent.

Remark 2.5 Since all manifolds are assumed to be connected we have tisatither a
positive or negative function. For the sake of symplicity, and without loss of generality, we
will always suppose that is a positive function.

Let ¢: (M1, A1, E1) — (M>, A, E3) be a differentiable mapping between the Jacobi
manifolds (M3, A1, E1) and (M2, A,, Ep). Suppose that, }; (respectively,{, }») is the
Jacobi bracket o, (respectively,My).

The mappingp is said to be a Jacobi morphism [3]{if2, g2}20 ¢ = {f20¢, g2 0 d}1
for f2, go € C*(M;, R) or, equivalently, if

A1(@ o, ¢*B2) = Ao(arz, B2) 0 ¢ ¢.E1=E> 9

for asy, B2 € Ql(Mz).

Now, if a is a positive function onM; then the pair(a, ¢) is called a conformal
Jacobi morphism [3] if the mapping is a Jacobi morphism between the Jacobi
manifolds (M1, (A1), (E1),) and (Ms, A, E»). The conformal Jacobi isomorphisms are
the conformal Jacobi morphisnis, ¢) such thatp is a diffeomorphism.

A vector field X on a Jacobi manifoldM, A, E) is said to be a Jacobi infinitesimal
transformation if

LxA=0  LyE=0 (10)

and it is a conformal Jacobi infinitesimal transformation if there existsC* (M, R) such
that [3,7, 9]

In what follows, the pair(g, X) will be called a conformal Jacobi infinitesimal
transformation.

Note that the Hamiltonian vector fields are conformal Jacobi infinitesimal
transformations. In fact, iff € C*°(M, R) then

Lx,A=—-E(f)A Lx, E=—#dE)) —ENE=—Xe). (12)

In particular, if f is a basic function (that is(f) = 0) thenX, is a Jacobi infinitesimal
transformation.
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3. Contact transformations and Legendre submanifolds

In this section, we will obtain some results on a particular class of conformal Jacobi
morphisms between contact manifolds, the contact transformations. Also, we will study the
relation between the contact transformations and the Legendre submanifolds. The general
study on conformal Jacobi morphisms between arbitrary Jacobi manifolds will be discussed
in sections 4—6. However, the results obtained in this section provide a good motivation
for such a study.

3.1. Legendre submanifolds in a contact manifold

Let (M, n) be a(2m + 1)-dimensional contact manifold. Denote ¥, E) its associated
Jacobi structure, and by : x(M) — QY(M) the isomorphism ofC> (M, R)-modules
defined byb(X) = ixdn + n(X)n, for X € x(M).

If x € M then a direct computation, using (8), proves that

#o() = —b 1 (@) + a(E ) Ex (13)

for « € T*M. Thus, the linear mapping,# T;M — (n,)° is an epimorphism and
Ker#, = (n,). In particular, the linear mapping. #E,)° — (1,)° is an isomorphism.

Now, let F be the 2:-dimensional distribution o/ given byn = 0. F is called the
contact distribution of\f. It is well known (see, for example, [2]) that there exist integral
submanifolds of the contact distributidn of dimensionm but of no higher dimension.

Definition 3.1 A submanifoldS of M is said to be a Legendre submanifold [7] if it is a
m-dimensional integral submanifold of the contact distribution.

Note that if S is a Legendre submanifold @7 andx € S then
(bx(u))(v) = dny(u,v) =0
for u, v € T, S. Using this fact and (13), we conclude that:

Proposition 3.2 Let (M, n) be a contact manifold an§l a submanifold of\f. Then,S is
a Legendre submanifold a¥ if and only if
#.(T.9° =TS

for x € S.

3.2. Contact transformations and Legendre submanifolds

We recall the definition of a contact transformation (see [2,7, 9]).

Definition 3.3 Let ¢ : (M1, n1) — (M2, n2) be a diffeomorphism between the contact
manifolds (M1, n1) and (Mz, n2) and suppose that is a positive function on;. The pair
(a, ¢) is said to be a contact transformation if

¢ n2 = any.

The conformal Jacobi isomorphisms between two contact manifolds are just the contact
transformations. In fact, we have (see [9]):
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Proposition 3.4 Let ¢ : (M1, m1) — (M3, n2) be a differentiable mapping between the
contact manifoldgM,, n1) and (M», np) and suppose that is a positive function on\;.
Then, the pair(a, ¢) is a conformal Jacobi isomorphism if and only if the péiya, ¢) is

a contact transformation.

Next, we will show that the product of two contact manifolds withis a contact
manifold. This result will be useful in the following.

Proposition 3.5 Let (Mq, n1) and (M>, n,) be contact manifolds with Reeb vector fields
E; and E,, respectively. Ift is the usual coordinate dR then the 1-formy; on the product
manifold M; x M, x R given by

n=rn1—€"'n (14)
is a contact 1-form. The Reeb vector field@f; x M, x R, n) is E;.

Proof. It follows from a direct computation. O

Remark 3.6 Using (8) and proposition 3.5, we obtain that the Jacobi structreE) on
the contact manifoldM, x M, x R, n) is

d d
A:Al—i——/\El—e‘ Ar— — NEy E=E
ot ot
where (A1, E1) and (A», E,) are the Jacobi structures #f; and M5, respectively.

The following result justifies the definition of the contact 1-fosnon the product manifold
M1 x My x R.

Theorem 3.7 Let ¢ :(M1,m) — (Ma, n2) be a diffeomorphism between the contact
manifolds(My, n1) and (M-, n,). Suppose that is a positive function o1, andS is the
submanifold of the product manifoltif; x M, x R defined by

S = {(x1,¢(x1), In 1) € My x My x R/Xl € Ml} .
a(xa)

Then, the pair(a, ¢) is a conformal Jacobi isomorphism if and onlySfis a Legendre
submanifold of(M; x M, x R, 1), n being the contact 1-form oM, x M, x R given by
(24).

Proof. If x; is a point of M1 andz = (x1, ¢ (x1), In(1/a(x1))) is the corresponding point
of the submanifoldS then the tangent spacgsS is the subspace df,(M; x M, x R) ~
Ty M1 & Ty M2 ® Tina/aeayR given by

o —via) (0
TzS = V1, ¢*1U1, ar
a(xy) ot In(1/a(x1))

Thus, since din§ = dim M; = dim M,, we prove the result using (14), definition 3.3 and
proposition 3.4. |

) (S} TZ(M]_ X M2 X R)/Ul € Tlel} .

From theorem 3.7, we conclude:

Corollary 3.8 Let ¢ : (M1,n1) — (M>, 1) be a diffeomorphism between the contact
manifolds (M1, n1) and (M., n2). Then, ¢ is a Jacobi isomorphism if and only if
Graph¢ x {0} is a Legendre submanifold off; x M, x R, n), n being the contact 1-form
on M; x M, x R given by (14).
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3.3. Contact infinitesimal transformations and Legendre submanifolds

We recall the definition of a contact infinitesimal transformation (see [7, 9]).

Definition 3.9 Let (M, n) be a contact manifold an& a vector field onM. If fisaC*>
function onM then the pain(f, X) is said to be a contact infinitesimal transformation if

Lxn = fn.

The conformal Jacobi infinitesimal transformations in a contact manifold are just the contact
infinitesimal transformations. In fact, we have [9] the following.

Proposition 3.10 Let (M, n) be a contact manifoldX a vector field onM and f a C*®
function onM. Then, the paiK f, X) is a conformal Jacobi infinitesimal transformation if
and only if the pair(— f, X) is a contact infinitesimal transformation.

Now, we will prove that the product dR with the tangent bundl& M of a contact
manifold M is also a contact manifold.

Proposition 3.11 Let (M, n) be a contact manifold with Reeb vector fieltland ;; the
1-form on the product manifol® x TM defined by

i =n°+sn" (15)
wheres is the usual coordinate dR andn® (respectively ") is the complete (respectively,

vertical) lift of » to TM. Then,(R x TM, i) is a contact manifold with Reeb vector field
the vertical lift EV of E to T M.

Proof. If X is a vector field onM we will denote byX°® (respectively,XV) the complete
(respectively, vertical) lift ofX to T M.

Letb :x(Rx TM) — QYR x T M) be the homomorphism @ (R x T M, R)-modules
defined by

b(X) = ig di +7(X)7
for X e x(R x TM). If X is a vector field onM such thaty(X) = 0 then, using (15) and
the results of [17], we have that

b(XY) = b(X)Y b(X®) = b(X)C + sb(X)"

_ - (9
b(EYY =n+sn' =17 b(E®) = —ds + 57 b <8> =n".
S
Thusb is an isomorphism o€ (R x TM, R)-modules which implies thafR x T M, ) is
a contact manifold (see [1]). Moreover, singg:Y) = 1, we deduce thatV is the Reeb
vector field of the contact manifolR x T M, 7). O

Remark 3.12 Using (8), proposition 3.11 and the results of [17] we obtain that the Jacobi
structure(A, E) on the contact manifoldR x TM, 1) is

_ 0 0 -
AZAC—i-a/\EC—S(AV—}-a/\EV) E=E"
s s

The following result justifies the definition of the contact 1-fofjnon the product manifold
RxTM.
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Theorem 3.13 Let (M, n) be a contact manifold. Suppose thatis a vector field onM
and denote byf x X : M — R x T M the mapping

xXeM—-> (fxX)x)=(f(x),Xx)eRxTM

f being aC® function on M. Then, the pair(f, X) is a conformal Jacobi infinitesimal
transformation if and only if f x X)(M) is a Legendre submanifold of the contact manifold
(R x TM, 17), whereq is the 1-form onR x TM given by (15).

Proof. If S = (f x X)(M), x is a point of M andz = (f(x), X,) € S then the tangent
spaceT. S is the subspace df, (R x TM) = TrnwR & Tx (T M) given by

a
IS = {(v(f)at

On the other hand, from the results of [17], we deduce that

,X:(v)> eT,RxTM)/ve T, M;. (16)
fx)

X*(n°) = Lxn Ny, © X3 = 1. 17)

Therefore, since dirf = dimM, we prove the result using (15)—(17), definition 3.9 and
proposition 3.10. O

Finally, from theorem 3.13, we conclude:

Corollary 3.14 Let (M, n) be a contact manifold an#f a vector field onM. Then,X is
a Jacobi infinitesimal transformation if and only{@} x X (M) is a Legendre submanifold
of (R x TM, 1), i being the contact 1-form oR x T M given by (15).

3.4. The symplectification of a contact manifold

Let M be a(2m + 1)-dimensional manifold ang a 1-form onM. We consider on the
product manifoldM x R the 2-form given by

Q=€edy+€drnn. (18)

From (18), we deduce thatis a contact 1-form o/ if and only if Q is a symplectic
2-form on M x R.

If (M, n) is a contact manifold then the symplectic manifeld x R, ) is called the
symplectification ofM (see [7]).

Suppose thatM, n) is a contact manifold and denote Iy, E) its associated Jacobi
structure, and byA the Poisson structure on the symplectificatidd x R, €2). A direct
computation, using (1) and (18), proves that

~ d
A= "A—i-e"&AE. (19)

Next, we will study the relation between the Legendre submanifoldsVfofand the
Lagrangian submanifolds dff x R.

Theorem 3.15 Let (M, n) be a contact manifold§ a submanifold of\f and(M x R, Q)
the symplectification oM. Then,S is a Legendre submanifold @ff if and only if § x R
is a Lagrangian submanifold of the symplectic manifold x R, ).
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Proof. If N is a Zi-dimensional symplectic manifold amd is the symplectic foliation of
N, thenD, = TN for x € N. Thus, a submanifold of N is Lagrangian if and only if
dimS = n and #(7,5)° C 7S for x € S (see (5)).

On the other hand, ifp € M andzy € R then, under the identificatioTi(’;M)(M xR) ~
T:M & TR, we have thatT,,$)° @ {0} = T, (S x R)°.

Using these facts, (13), (19) and proposition 3.2, we prove the result. a

Now, we will show that a conformal Jacobi isomorphism between two contact manifolds
induces a symplectic isomorphism (or equivalently a Poisson isomorphism) between the
corresponding symplectifications. In fact, we obtain:

Theorem 3.16 Let ¢ : (M1, m) — (Mo, n2) be a diffeomorphism between the contact
marjifolds(Ml, n1) and (Ma, n2). Suppose that is a positive function on; and denote
by ¢, : M1 x R — M, x R the diffeomorphism defined by

ba(x1, p) = (P(x1), p + In(a(x1))). (20)

Then, the paira, ¢) is a conformal Jacobi isomorphism if and onlydif is a symplectic
isomorphism between the symplectificatiofid; x R, 1) and (M, x R, Q) of M; and
M, respectively.

Proof. It follows from definition 3.3, proposition 3.4, (18) and (20). O

Finally, we will see that a conformal Jacobi infinitesimal transformation in a
contact manifold induces a symplectic infinitesimal transformation of the corresponding
symplectification.

Theorem 3.17 Let (M, n) be a contact manifoldX a vector field andf a C* function
on M. Then, the pail(f, X) is a conformal Jacobi infinitesimal transformation if and only
if the vector fieldX, on M x R given by

~ ad
Xp=X+7f m (21)
is a symplectic infinitesimal transformation of the symplectificatidh x R, ) of M.

Proof. It follows using definition 3.9, proposition 3.10, (18) and (21). |

4. Co-isotropic and Legendre—Lagrangian submanifolds in a Jacobi manifold

In this section, we introduce and characterize the notion of a co-isotropic and Legendre—
Lagrangian submanifold in a Jacobi manifold.

Definition 4.1 Let (M, A, E) be a Jacobi manifold with characteristic foliatidhand S
a submanifold ofM. The submanifoldsS is said to be:
(i) co-isotropic if

#(T,S)° C T, S (22)
for x € S;
(i) Legendre—Lagrangian if
#.(T.5)° = T.S N D, (23)

for x € S.
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Remark 4.2 (i) Definition 4.1 generalizes for Jacobi manifolds the notion of a co-isotropic
and Lagrangian submanifold in a Poisson manifold (see (4), (5), (22) and (23)).

(i) Let (M, n) be a contact manifold anfl a submanifold of\f. Suppose thatA, E)
is the associated Jacobi structure Mn Then, S is a Legendre submanifold of the contact
manifold (M, ) if and only if S is a Legendre—Lagrangian submanifold of the Jacobi
manifold (M, A, E) (see (23) and proposition 3.2). Note that, in this ca3g~= 7, M for
xeM.

Next, we prove a result which will be useful in the following.

Lemma 4.3 Let (M, A,E) be a Jacobi manifold andS a Legendre—Lagrangian
submanifold of M. Suppose thato is a point of S such thatkE,, ¢ #,(T; M). Then,
there exists a 1-form,, on M atxq such thaty,, € (7.,5)°, 1, (Ex,) = 1 and #,(n,,) = 0.

Proof.  Using (23), we deduce thdt,S N Dy, = Ty, S N #,,(T,; M). Assume that the rank
of A atxgis 2r. Then,

r

Axo = Zui AN (24)
i=1
with {us, ..., u,, v1,..., v} alinearly independent system iy, M. From (24), we obtain
that
Ho(ToM) = (ua, ..., U, v1, ..., V). (25)

Let W,, be a subspace df,,S such that
TS = (T,;,SN Dy,) & Wy, = (T, SN #XO(T;;M)) e Wy,. (26)

If dmW,, = s and{ws, ..., ws} is a basis ofW,, then, using (25), (26) and the fact that
Ey, & #,(T3: M), we have thafus, ..., u,,v1,..., v, Ey, w1,..., ws} is also a linearly
independent system if,, M.

Now, suppose thafui,...,u,, v1,..., v, Exy, w1, ..., Wy, 24, ...,2p} IS @ basis of
T,,M and that{ora, ..., ar, B1, ..., Br, Nxgs V1o - - -5 Vs V1, - .., Vp} IS the dual basis oTx’gM.
Then, from (24)—(26), we conclude tha, € (7.,5)°, 1 (Ey,) = 1 and #,(n,,) =0. O

Let M be a differentiable manifoldA a 2-ve9tor andE a vector field onM. We consider
on the product manifoldZ x R the 2-vectorA given by

. 9
A=e'Ate’ AE (27)

t being the usual coordinate dh

We have that the paifA, E) is a Jacobi structure of if and only if A is a Poisson
structure onM x R (see [9]).

If (M, A, E) is a Jacobi manifold then the product manifdi x R with the structure
A was called by Lichnerowicz [9] the tangentially exact Poisson manifold associated with
M. In what follows, and taking into account the fact that for a contact manifdddn),
A is just its symplectification, we will call it the Poissonization of the Jacobi manifold
(M, A, E).
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Theorem 4.4 Let(M, A, E) be a Jacobi manifold§ a submanifold off and(M x R, A)
the Poissonization o#. Then:

(i) S is a co-isotropic submanifold @ if and only if S xR is a co-isotropic submanifold
of the Poisson manifoldM x R, A);

(ii) S is a Legendre—Lagrangian submanifoldMfif and only if S x R is a Lagrangian
submanifold of the Poisson manifold? x R, A).

Proof. If xg € S andry € R then, under the identificatioﬁ(jo,lo)(M xR)~ Ty M TR,
we have that7,,5)° @ {0} = T(.,..) (S x R)°. Using this fact, (4), (22) and (27) we prove
().

Now, suppose thatS x R is a Lagrangian submanifold of the Poisson manifold
(M x R, A). Then, from (5), (23) and (27), we deduce tlsats a Legendre—Lagrangian
submanifold ofM.

Conversely, letS be a Legendre-Lagrangian submanifoldiéf If xo € § andz € R
then, using (23) and (27), we obtain that, ) (@) € TS X R) = T, S & T,,R, for
o € Tipi0)(S x R) = (T, $)° @ {0}. This shows that

F#x0.10) (Txo,i0) (S X R)®) € Hg 1) (T 1) (M X R)) N T, (S X R).

X0,t0)

Next, we will prove that
#iroi0) (T 10y (M X R)) N T 1) (S X R) S Fgio) T (S x R)O)

which implies thatS x R is a Lagrangian submanifold of the Poisson manifaiix R, A).

Let « be a 1-form onM at xo and A a real number such that,, (e + A dt|,) €
Tt (S X R) &~ Ty, S @ T,,R. From (23) and (27), we deduce that there exsts (T, 5)°
such that

Ho(B) = #Hyy(a) + AE,. (28)
We will see that there existg € (T, 5)° satisfying
Hi(y) = #(a) + LE,, V(Ex) = a(Ey) (29)

which shows tha#, (@ + A dt|;,) € Fp.0) Tiro) (S X R)0) (see (27)).

We distinguish two cases.

(a) Suppose thak,, € #,(7; M). In such a case, there is a 1-fomm, on M at xo
such that # (w,,) = E,,- We have that, (E,,) = 0 and, using (28), we conclude that
a(E,,) = B(E,,). Thus, the 1-formp € (T,,5)° satisfies (29).

(b) Suppose that,, ¢ #,,(T:M). In this case, we consider a 1-form, € (T, S)°
such thatn,(E,,) = 1 and #,(n,) = O (see lemma 4.3). Then, the 1-forgn =
B+ (@(Ey,) — B(Exp))ny, € (T3,S)° satisfies (29). O

Remark 4.5 Actually, theorem 3.15 is a corollary of theorem 4.4.

5. Conformal Jacobi morphisms and co-isotropic submanifolds

In this section, we will study conformal Jacobi morphisms and we will obtain a
generalization of theorems 2.2 and 3.7.
For this purpose, we prove the following.
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Proposition 5.1 If (M3, A1, E1) and (M2, A,, E») are Jacobi manifolds; is the usual
coordinate onR and A and E are the 2-vector and the vector field, respectively, on the
product manifoldM; x M, x R given by

a ad
A=A1+81/\El_et<A2_8t/\E2> E=F (30)
then (M, x M, x R, A, E) is a Jacobi manifold.
Proof. It follows from a direct computation using (6). O

Remark 5.2 If M; and M, are Poisson manifolds then, from proposition 5.1, we deduce
that the 2-vectorA given by A = A; — € A, defines a Poisson structure on the product
manifold M; x M> x R. Moreover, the natural restrictiony of A to the submanifold

N = M1 x M, x {0} also defines a Poisson structure 8n In fact, the identification

My x My — My x M3 x {0} (x1, x2) = (x1,x2,0)

is a Poisson isomorphism between the Poisson manifdids< M5, A) and(N, Ay), where
A= A1 — As.

Remarks 3.6 and 5.2 and the following result (announced at the beginning of this section)
justify the definition of the Jacobi structuta, E) given by (30).

Theorem 5.3 Let¢ : (M1, A1, E1) — (M3, Ay, E) be a differentiable mapping between
the Jacobi manifold$M, A1, E1) and (M», A,, E3). Suppose that is a positive function
on M; and thatS is the submanifold of the product manifol; x M, x R defined by

S = {<X1,¢(X1),|ﬂ 1) GMlxMQXR/)ClEMl}. (31)
a(x1)

Then, the pair(a, ¢) is a conformal Jacobi morphism if and only §f is a co-isotropic
submanifold of(M, x M> xR, A, E), where(A, E) is the Jacobi structure alf; x Mo x R
given by (30).

Proof We consider the mapping, : M1 x R — M, x R defined by

$a(x1, p) = ($(x1), p + In(a(x1)) (32)
for x1 € My andp € R.

From (2), (9), (27) and (32), we deduce that the pair¢) is a conformal Jacobi
morphism if and only if the mapping, is a Poisson morphism between the Poissonizations
(M1 x R, Ap) and (M, x R, A,) of the Jacobi manifolds; and M,, respectively (see
theorem 3.16).

Now, denote by : (M1 x My x R) x R — (M1 x R) x (M2 x R) the diffeomorphism
given by

1:”((-xlv X2, t)7 S) = ((-xlv S), (XZv s — t)) (33)
for x; € My, xo € M, andt, s € R.

Let (M1 x M> x R) x R, A) be the Poissonization of the Jacobi manifgif; x
M> xR, A, E). Then, using (27), (30) and (33), we obtain thjats a Poisson isomorphism
between the Poisson manifoldd/, x M> x R) xR, A) and((M1 xR) x (M, xR), A1—A»).
Moreover, from (31)—(33), we have that

¥ (S x R) = Graphg,.
Thus, using theorems 2.2 and 4.4, we prove our result. O
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Remark 5.4 Let (M, n) be a(2m + 1)-dimensional contact manifold arfla submanifold
of M. Then, S is a Legendre submanifold a¥7 if and only if S is co-isotropic and
dimS = m (see (13) and proposition 3.2). Therefore, theorem 5.3 generalizes theorem 3.7.

From theorem 5.3, we conclude

Corollary 5.5 Let¢ : (M1, A1, E1) - (M2, A, E>) be a differentiable mapping between
the Jacobi manifold$M, A1, E1) and (M», A,, E3). Then,¢ is a Jacobi morphism if and
only if Graph¢ x {0} is a co-isotropic submanifold afM; x M, x R, A, E), where(A, E)

is the Jacobi structure oMy x M» x R given by (30).

Remark 5.6 Using corollary 5.5 and remarks 4.2 and 5.2, we directly deduce theorem 2.2.

6. Conformal Jacobi infinitesimal transformations and Legendre—Lagrangian
submanifolds

In this section, we will study conformal Jacobi infinitesimal transformations and we will
obtain a generalization of theorems 2.3 and 3.13.
For this purpose, we prove:

Proposition 6.1 Let (M, A, E) be a Jacobi manifold and the 2-vector on the product
manifold R x 7 M defined by

as

wheres is the usual coordinate dR, A° (respectively,AY) is the complete (respectively,
vertical) lift to 7M of A and E° (respectively,EV) is the complete (respectively, vertical)
lift to TM of E. Then, the pail(A, EV) is a Jacobi structure oR x T M.

B} 9 9
A:Ac—i—a/\EC—s(Av—}-AEV) (34)
N

Proof. Using (6) and the results of [17], we deduce that

[AS, Al =[A, A]° =2(E°A A + EY A AS) [AY,A] =0

[AS, AY] =[A, A]Y = 2EY A AV (35)
We also have

[AS, E ) =[A,E]°=0 [AS,EY]=[A,E]Y =0

[AY, E]] =[A,E]Y=0 [AY,EY] =0. (36)
Thus, from (34)—(36), we conclude that the p@ir, EV) is a Jacobi structure dR x T M. O

Remark 6.2 If (M, A) is a Poisson manifold then, using proposition 6.1, we obtain that
the 2-vectorA = A® — s A defines a Poisson structure Bnx 7M. Moreover, the natural
restriction Ay of A to the submanifoldV = {0} x 7 M also defines a Poisson structure on
N. In fact, the diffeomorphism

T™M - {0} x TM v — (0, v)
is a Poisson isomorphism between the Poisson manifdldg, A% and (N, Ay).

If f e C>*(M,R), we will denote by f¢ (respectively, f¥) the complete (respectively,
vertical) lift to TM of f. Then, from (7), (34) and the results of [17], we have:
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Corollary 6.3 Let (M, A, E) be a Jacobi manifoldA the 2-vector orR x TM given by
(34) andEY the vertical lift to7TM of E. Suppose that, }r«ru (respectively,, }y) is
the Jacobi bracket afR x TM, A, EV) (respectively(M, A, E)). Then

(£ &%murm — {fs gV + 5, &Y =FY(E@)° — g"(E(f)° + 58" (E(f)" —sf (E(g)"
{f% & rxrm — L=){f. gl = 6 = D f(E@)" —sg"(E(f)"

{rY, 8" Yrxrm =0 {s, [Orxrm = (E(f))° {s, fMYrxry = (E(f))"

for f, g € C®°(M,R).

Using corollary 6.3, we deduce:

Corollary 6.4 Let (M, A, E) be a Jacobi manifoldA the 2-vector orR x T M given by
(34) andEVY the vertical lift toTM of E. If {, g7ty (respectively,{, }y) is the Jacobi
bracket of (R x TM, A, EV) (respectively,(M, A, E)) and f, g € C®(M,R) are basic
functions (that isE(f) = E(g) = 0), then

{FC, &%rxrm = {f. 85y — s{f. 8}y
{fcv gV}RXTM = (l - s){fv g}\llvl
(Y, &"Yrxrm = {s, fCrxrm = {s, [VIrxrm = 0.

Remarks 3.12 and 6.2 and the following result (announced at the beginning of this section)
justify the definition of the Jacobi structur@, EY) on the product manifol®R x 7M.

Theorem 6.5 Let (M, A, E) be a Jacobi manifold. Suppose thais a vector field onv/
and denote byf x X : M — R x TM the mapping

XEM—> (fxX)x)=(f(x),X(x) eRxTM (37)

f being aC® function on M. Then, the pair(f, X) is a conformal Jacobi infinitesimal
transformation if and only if(f x X)(M) is a Legendre-Lagrangian submanifold of the
Jacobi manifoldR x TM, A, EV), whereE" is the vertical lift toT M of E and A is the
2-vector onR x TM given by (34).

Proof Let(M x R, A) be the Poissonization o¥f.

Using the results of [9] we have that the péafi X) is a conformal Jacobi infinitesimal
transformation if and only if the vector fieldl; = X + f3/dt is a Poisson infinitesimal
transformation of the Poisson manifold? x R, A) (see theorem 3.17).

Now, denote by : (R x TM) x R — T(M x R) the diffeomorphism defined by

9
Y5 v), p)=vts (38)
p

forve TM ands, p € R.

If (RxTM)xR, A) is the Poissonization of the Jacobi manifdRix T M, A, EV) then,
using (27), (34), (38) and the results of [17], we deduce thas a Poisson isomorphism

between the Poisson manifold6R x TM) x R, A) and (T (M x R), A®). Furthermore,
from (37) and (38), we obtain that

Y((f x X)(M) x R) = X;(M x R).

Therefore, using theorems 2.3 and 4.4, we prove our result. O
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Remark 6.6 Theorem 6.5 generalizes theorem 3.13.
From theorem 6.5, we conclude:

Corollary 6.7. Let (M, A, E) be a Jacobi manifold an®l a vector field onM. Then,X is

a Jacobi infinitesimal transformation if and only{l} x X (M) is a Legendre—Lagrangian
submanifold of the Jacobi manifold® x TM, A, EV), whereE" is the vertical lift toT M
of E and A is the 2-vector orR x T M given by (34).

Remark 6.8 Using corollary 6.7 and remarks 4.2 and 6.2, we directly deduce the second
part of theorem 2.3.

From (10)—(12), theorem 6.5 and corollary 6.7, we obtain:

Corollary 6.9 Let (M, A, E) be a Jacobi manifold angd a C*>-function onM. Suppose
that EV is the vertical lift to7 M of E and thatA is the 2-vector ofR x TM given by (34).
(i) If X is the Hamiltonian vector field associated withthen (—E(f) x X¢)(M) is
a Legendre—Lagrangian submanifold of the Jacobi maniflck 7M, A, EY).
(i) If f is a basic function thef0} x X;(M) is a Legendre—Lagrangian submanifold

of the Jacobi manifoldR x TM, A, EY).
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